Text Generation
AI Dev Kit provides multiple methods for generating text content, each optimized for different use cases.
Available Methods
1. Chat Completions (.GENCompletion())
.GENCompletion())General-purpose chat and text generation:
string response = await "Explain quantum computing"
.GENCompletion()
.SetModel(OpenAIModel.GPT4o)
.ExecuteAsync();Best for:
✅ Conversational AI
✅ General text generation
✅ Multi-turn conversations
✅ Wide provider support
2. Responses API (.GENResponse())
.GENResponse())Most capable text generation with advanced features:
string response = await "Write a technical spec"
.GENResponse()
.SetModel(OpenAIModel.GPT4o)
.ExecuteAsync();Best for:
✅ Complex reasoning tasks
✅ Long-form content
✅ Tool calling support
✅ Latest AI capabilities
3. Code Generation (.GENCode())
.GENCode())Specialized for code generation and refactoring:
Best for:
✅ Code generation
✅ Code explanation
✅ Refactoring suggestions
✅ Bug fixes
4. Structured Output (.GENStruct<T>())
.GENStruct<T>())Generate JSON mapped to strongly-typed C# classes:
Best for:
✅ Parsing AI output into C# objects
✅ Data extraction
✅ Form filling
✅ Type-safe responses
Quick Comparison
GENCompletion()
General chat
Most providers
Simple
GENResponse()
Advanced features
Limited providers
Advanced
GENCode()
Code generation
Most providers
Simple
GENStruct<T>()
JSON output
Most providers
Medium
Basic Examples
Example 1: Simple Question
Example 2: Story Generation
Example 3: Code Generation
Example 4: Structured Data
Configuration Options
All text generation methods support common configuration:
Next Steps
Chat Completions - Detailed chat API guide
Responses API - Advanced features
Code Generation - Code-specific options
Structured Output - JSON schema guide
Last updated