Text Generation
AI Dev Kit provides multiple methods for generating text content, each optimized for different use cases.
Available Methods
1. Chat Completions (.GENCompletion())
.GENCompletion())General-purpose chat and text generation:
string response = await "Explain quantum computing"
.GENCompletion()
.SetModel(OpenAIModel.GPT4o)
.ExecuteAsync();Best for:
✅ Conversational AI
✅ General text generation
✅ Multi-turn conversations
✅ Wide provider support
2. Responses API (.GENResponse())
.GENResponse())Most capable text generation with advanced features:
string response = await "Write a technical spec"
.GENResponse()
.SetModel(OpenAIModel.GPT4o)
.ExecuteAsync();Best for:
✅ Complex reasoning tasks
✅ Long-form content
✅ Tool calling support
✅ Latest AI capabilities
3. Code Generation (.GENCode())
.GENCode())Specialized for code generation and refactoring:
string code = await "Create a C# quicksort algorithm"
.GENCode()
.ExecuteAsync();Best for:
✅ Code generation
✅ Code explanation
✅ Refactoring suggestions
✅ Bug fixes
4. Structured Output (.GENStruct<T>())
.GENStruct<T>())Generate JSON mapped to strongly-typed C# classes:
UserProfile profile = await "Create profile for John Doe, age 30"
.GENStruct<UserProfile>()
.ExecuteAsync();Best for:
✅ Parsing AI output into C# objects
✅ Data extraction
✅ Form filling
✅ Type-safe responses
Quick Comparison
GENCompletion()
General chat
Most providers
Simple
GENResponse()
Advanced features
Limited providers
Advanced
GENCode()
Code generation
Most providers
Simple
GENStruct<T>()
JSON output
Most providers
Medium
Basic Examples
Example 1: Simple Question
string answer = await "What is 2+2?"
.GENCompletion()
.ExecuteAsync();
Debug.Log(answer); // "2+2 equals 4."Example 2: Story Generation
string story = await "Write a short sci-fi story about AI"
.GENResponse()
.SetModel(OpenAIModel.GPT4o)
.SetMaxTokens(500)
.ExecuteAsync();
Debug.Log(story);Example 3: Code Generation
string code = await "Create a Unity script that rotates an object"
.GENCode()
.ExecuteAsync();
Debug.Log(code);Example 4: Structured Data
[JsonSchema]
public class Character
{
public string Name { get; set; }
public int Level { get; set; }
public string Class { get; set; }
}
Character hero = await "Generate a level 5 warrior named Aragorn"
.GENStruct<Character>()
.ExecuteAsync();
Debug.Log($"{hero.Name} (Lv.{hero.Level} {hero.Class})");Configuration Options
All text generation methods support common configuration:
string response = await "Your prompt"
.GENCompletion()
.SetModel(OpenAIModel.GPT4o) // Model selection
.SetTemperature(0.7f) // Creativity (0.0-2.0)
.SetMaxTokens(1000) // Max response length
.SetSystemMessage("You are helpful") // Context
.SetTopP(0.9f) // Nucleus sampling
.SetFrequencyPenalty(0.5f) // Reduce repetition
.SetPresencePenalty(0.5f) // Encourage diversity
.ExecuteAsync();Next Steps
Chat Completions - Detailed chat API guide
Responses API - Advanced features
Code Generation - Code-specific options
Structured Output - JSON schema guide
Last updated