Chat Completions
The Chat Completions API is the most widely supported text generation method across AI providers.
Basic Usage
Simple Text Input
string response = await "Hello, AI!"
.GENCompletion()
.ExecuteAsync();With Model Selection
string response = await "Explain photosynthesis"
.GENCompletion()
.SetModel(OpenAIModel.GPT4o)
.ExecuteAsync();Input Types
1. String Input
Direct text prompt:
2. Message Input
Use Message object for more control:
3. Prompt Input
Use Prompt object for reusable prompts:
Configuration
Temperature
Controls randomness (0.0 = deterministic, 2.0 = very creative):
Max Tokens
Limit response length:
System Message
Set context and behavior:
Top P (Nucleus Sampling)
Alternative to temperature (0.0-1.0):
Frequency Penalty
Reduce word repetition (-2.0 to 2.0):
Presence Penalty
Encourage topic diversity (-2.0 to 2.0):
Multi-Turn Conversations
Build conversation history:
Streaming
Get real-time token-by-token responses:
Provider Support
OpenAI
✅ Full
GPT-4o, GPT-4, GPT-3.5
Anthropic
✅ Full
Claude 3.5, Claude 3
Google Gemini
✅ Full
Gemini 1.5, Gemini 1.0
OpenRouter
✅ Full
All models
Groq
✅ Full
Llama 3, Mixtral
xAI
✅ Full
Grok
Perplexity
✅ Full
All models
Azure OpenAI
✅ Full
GPT-4, GPT-3.5
Ollama
✅ Full
All local models
Examples
Example 1: Chatbot Response
Example 2: FAQ System
Example 3: Contextual Help
Example 4: Translation
Error Handling
Best Practices
✅ Do
Use lower temperature (0.0-0.3) for factual answers
Use higher temperature (0.7-1.5) for creative content
Set reasonable max tokens to control costs
Cache responses when possible
Handle errors gracefully
❌ Don't
Set temperature above 2.0 (unstable results)
Use very high frequency/presence penalties (degrades quality)
Forget to set system messages for context
Ignore error handling
Call API in tight loops without rate limiting
Next Steps
Responses API - More advanced features
Code Generation - Specialized for code
Structured Output - Type-safe JSON
Last updated