Create a function that makes an API request. This function should be defined within the code of your application, but could call services or APIs outside of your application. The Gemini API does not call this function directly, so you can control how and when this function is executed through your application code. For demonstration purposes, this tutorial defines a mock API function that just returns the requested lighting values:
// Set the brightness and color temperature of a room light. (mock API).// brightness: Light level from 0 to 100. Zero is off and 100 is full brightness// colorTemp: Color temperature of the light fixture, which can be `daylight`, `cool` or `warm`.publicDictionary<string,object> SetLightValues(int brightness,string colorTemp){ // Implement the real API call here // Return the set brightness and color temperature.returnnewDictionary<string,object> { { "brightness", brightness }, { "colorTemperature", colorTemp } };}
defset_light_values(brightness,color_temp):"""Set the brightness and color temperature of a room light. (mock API). Args: brightness: Light level from 0 to 100. Zero is off and 100 is full brightness color_temp: Color temperature of the light fixture, which can be `daylight`, `cool` or `warm`. Returns: A dictionary containing the set brightness and color temperature. """return{"brightness": brightness,"colorTemperature": color_temp}
When you create a function to be used in a function call by the model, you should include as much detail as possible in the function and parameter descriptions. The generative model uses this information to determine which function to select and how to provide values for the parameters in the function call.
For any production application, you should validate the data being passed to the API function from the model before executing the function.
For programing languages other than Python, you must create create a separate function declaration for your API. See the other language programming tutorials more details.
Declare functions during model initialization
When you want to use function calling with a model, you must declare your functions when you initialize the model object. You declare functions by setting the model's tools parameter:
var model =newGenerativeModel(GeminiModel.Gemini15Flash, tools:"set_light_values");
model = genai.GenerativeModel(model_name='gemini-1.5-flash', tools=[set_light_values])
Generate a function call
Once you have initialized model with your function declarations, you can prompt the model with the defined function. You should use use function calling using chat prompting (sendMessage()), since function calling generally benefits from having the context of previous prompts and responses.
var chat =model.StartChat();var response =awaitchat.SendMessageAsync("Dim the lights so the room feels cozy and warm.");Debug.Log(response.Text);
chat = model.start_chat()response = chat.send_message('Dim the lights so the room feels cozy and warm.')response.text
The AI Development Kit's ChatSession object simplifies managing chat sessions by handling the conversation history for you. You can use the enable_automatic_function_calling to have the SDK automatically
// Create a chat session that automatically makes suggested function callschat =model.StartChat(enableAutomaticFunctionCalling:true);
# Create a chat session that automatically makes suggested function callschat = model.start_chat(enable_automatic_function_calling=True)
Warning:Do not use this feature in production applications as there are no data input verification checks for automatic function calls.
Parallel function calling
In addition to basic function calling described above, you can also call multiple functions in a single turn. This section shows an example for how you can use parallel function calling.
Step 1. Define the arguments for tools.
// Powers the spinning disco ball.publicclassPowerDiscoBallArg{ [JsonSchema("power", Description ="Whether to power the disco ball or not.", Required =true)]publicbool Power { get; set; }}// Play some music matching the specified parameters.publicclassStartMusicArg{ [JsonSchema("energetic", Description ="Whether the music is energetic or not.", Required =true)]publicbool Energetic { get; set; } [JsonSchema("loud", Description ="Whether the music is loud or not.", Required =true)]publicbool Loud { get; set; } [JsonSchema("bpm", Description ="The beats per minute of the music.", Required =true)]publicint Bpm { get; set; }}// Dim the lights.publicclassDimLightsArg{ [JsonSchema("brightness", Description ="The brightness of the lights, 0.0 is off, 1.0 is full.", Required =true)]publicfloat Brightness { get; set; }}
defpower_disco_ball(power:bool) ->bool:"""Powers the spinning disco ball."""print(f"Disco ball is {'spinning!'if power else'stopped.'}")returnTruedefstart_music(energetic:bool,loud:bool,bpm:int) ->str:"""Play some music matching the specified parameters. Args: energetic: Whether the music is energetic or not. loud: Whether the music is loud or not. bpm: The beats per minute of the music. Returns: The name of the song being played. """print(f"Starting music! {energetic=}{loud=}, {bpm=}")return"Never gonna give you up."defdim_lights(brightness:float) ->bool:"""Dim the lights. Args: brightness: The brightness of the lights, 0.0 is off, 1.0 is full. """print(f"Lights are now set to {brightness:.0%}")returnTrue
Step 2. Define the delegates for tools.
// Define function delegatespublicclassPowerDiscoBallDelegate:FunctionDelegate<PowerDiscoBallArg,Result<bool>>{publicoverrideUniTask<Result<bool>> Invoke(PowerDiscoBallArg argument) {bool result = PowerDiscoBall(argument.Power);returnUniTask.FromResult(Result.Success(result)); }privateboolPowerDiscoBall(bool power) { // Print the status of the disco ballDebug.Log($"Disco ball is {(power ? "spinning!" : "stopped.")}"); // Return true to indicate successreturntrue; }}publicclassStartMusicDelegate:FunctionDelegate<StartMusicArg,Result<string>>{publicoverrideUniTask<Result<string>> Invoke(StartMusicArg argument) {string result = StartMusic(argument.Energetic,argument.Loud,argument.Bpm);returnUniTask.FromResult(Result.Success<string>(result)); }privatestringStartMusic(bool energetic,bool loud,int bpm) { // Simulate starting musicreturn$"Music started with energetic={energetic}, loud={loud}, bpm={bpm}"; }}publicclassDimLightsDelegate:FunctionDelegate<DimLightsArg,Result<bool>>{publicoverrideUniTask<Result<bool>> Invoke(DimLightsArg argument) {bool result = DimLights(argument.Brightness);returnUniTask.FromResult(Result.Success(result)); }privateboolDimLights(float brightness) { // Simulate dimming lightsDebug.Log($"Lights dimmed to brightness level: {brightness}");returntrue; }}
Step 3. Now call the model with an instruction that could use all of the specified tools.
// Set the model up with tools.Tool houseFns =newTool(newPowerDiscoBallDelegate(),newStartMusicDelegate(),newDimLightsDelegate());var model =newGenerativeModel(GeminiModel.Gemini15Flash, tools: houseFns);// Call the API.var chat =model.StartChat();var response =awaitchat.SendMessageAsync("Turn this place into a party!");// Print out each of the function calls requested from this single call.foreach (var part inresponse.Parts){if (part.FunctionCall!=null) {var fn =part.FunctionCall;var args =string.Join(", ",fn.Args.Select(kv =>$"{kv.Key}={kv.Value}"));Debug.Log($"{fn.Name}({args})"); }}
# Set the model up with tools.house_fns = [power_disco_ball, start_music, dim_lights]model = genai.GenerativeModel(model_name="gemini-1.5-flash", tools=house_fns)# Call the API.chat = model.start_chat()response = chat.send_message("Turn this place into a party!")# Print out each of the function calls requested from this single call.for part in response.parts:if fn := part.function_call: args =", ".join(f"{key}={val}"for key, val in fn.args.items())print(f"{fn.name}({args})")
Each of the printed results reflects a single function call that the model has requested. To send the results back, include the responses in the same order as they were requested.
// Simulate the responses from the specified tools.var responses =newDictionary<string,object>{ { "power_disco_ball",true }, { "start_music","Never gonna give you up." }, { "dim_lights",true }};// Build the response parts.var responseParts =responses.Select(kv =>newPart(newFunctionResponse(kv.Key,newDictionary<string,object> { { "result",kv.Value } }))).ToList();response =awaitchat.SendMessageAsync(responseParts);Debug.Log(response.Text);
# Simulate the responses from the specified tools.responses ={"power_disco_ball":True,"start_music":"Never gonna give you up.","dim_lights":True,}# Build the response parts.response_parts = [ genai.protos.Part(function_response=genai.protos.FunctionResponse(name=fn, response={"result": val}))for fn, val in responses.items()]response = chat.send_message(response_parts)print(response.text)
Let's get this party started!
I've turned on the disco ball, started playing some upbeat music, and dimmed the lights. 🎶✨
Get ready to dance! 🕺💃
Function call data type mapping
When using the AI Development Kit to extract schemas from C# methods, certain cases, such as nested dictionary-objects, may not be handled correctly. However, the API does support these types. The supported types include:
int
float
bool
string
List<AllowedType>
Dictionary<string, AllowedType>
Important: The SDK converts method parameter type annotations to a format the API understands. The API only supports a limited selection of parameter types, and the C# SDK's automatic conversion only supports a subset of the allowed types above.
First peek inside the model's JsonSchema attribute, you can see how it describes the function(s) you passed it to the model:
usingCysharp.Threading.Tasks;usingGlitch9.AIDevKit.Google.GenerativeAI;usingUnityEngine;// Define the schema for the function arguments.publicclassCalculatorArg{ [JsonSchema("a", Description ="The first number.", Required =true)]publicfloat a { get; set; } [JsonSchema("b", Description ="The second number.", Required =true)]publicfloat b { get; set; }}// Define the function delegate.publicclassMultiplyDelegate:FunctionDelegate<CalculatorArg,Result<float>>{publicoverrideUniTask<Result<float>> Invoke(CalculatorArg argument) {float result =argument.a*argument.b;returnUniTask.FromResult(Result.Success(result)); }}// Set the model up with tools.Tool multiplyTool =newTool(newMultiplyDelegate());var model =newGenerativeModel(GeminiModel.Gemini15Flash, tools: multiplyTool);// Call the API.var chat =model.StartChat();var response =awaitchat.SendMessageAsync("What is 2 times 3?");// Print out the response.Debug.Log(response.Text);
defmultiply(a:float,b:float):"""returns a * b."""return a*bmodel = genai.GenerativeModel(model_name='gemini-1.5-flash', tools=[multiply])model._tools.to_proto()
Execute the function yourself:
var fc =response.Candidates[0].Content.Parts[0].FunctionCall;Debug.Assert(fc.Name=="multiply");if (!fc.Args.TryGetValue("a", out var aObj) ||!fc.Args.TryGetValue("b", out var bObj) || aObj isnotfloat a || bObj isnotfloat b){Debug.LogError("Invalid arguments.");return;}float result = a * b;Debug.Log(result);
fc = response.candidates[0].content.parts[0].function_callassert fc.name =='multiply'result = fc.args['a']* fc.args['b']#result: 76358547152.0
Send the result to the model, to continue the conversation:
var responseParts =newList<Part>{newPart(newFunctionResponse("multiply",newDictionary<string,object> { { "result", result } }))};response =awaitchat.SendMessageAsync(responseParts);